Multiple Linear Regressions

Multiple Linear Regressions:-

Multiple linear regression (MLR), also known simply as multiple regression, is a statistical technique that uses several explanatory variables to predict the outcome of a response variable. The goal of multiple linear regression is to model the linear relationship between the explanatory (independent) variables and response (dependent) variables. In essence, multiple regression is the extension of ordinary least-squares (OLS) regression because it involves more than one explanatory variable.

Multiple linear regression (MLR), also known simply as multiple regression, is a statistical technique that uses several explanatory variables to predict the outcome of a response variable.

Multiple regression is an extension of linear (OLS) regression that uses just one explanatory variable.

What Multiple Linear Regression Can Tell You

Simple linear regression is a function that allows an analyst or statistician to make predictions about one variable based on the information that is known about another variable. Linear regression can only be used when one has two continuous variables   an independent variable and a dependent variable. The independent variable is the parameter that is used to calculate the dependent variable or outcome. A multiple regression model extends to several explanatory variables.

The multiple regression model is based on the following assumptions:

There is a linear relationship between the dependent variables and the independent variables The independent variables are not too highly correlated with each other yi observations are selected independently and randomly from the population. 


code:

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 

"""## Importing the dataset""" 

 

##  dataset = pd.read_csv(r'D:\Regression\50_Startups.csv') 

dataset = pd.read_csv("C:/Users/SR Laptop/Desktop/multiple linear regression/50_Startups.csv")

X = dataset.iloc[:, :-1].values 

y = dataset.iloc[:, -1].values 

 

print(X) 

 

"""## Encoding categorical data""" 

 

from sklearn.compose import ColumnTransformer 

from sklearn.preprocessing import OneHotEncoder 

ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [3])], 

remainder='passthrough') 

X = np.array(ct.fit_transform(X)) 

print(X) 

"""## Splitting the dataset into the Training set and Test set""" 

 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, 

random_state = 0) 

 

"""## Training the Multiple Linear Regression model on the Training set""" 

 

from sklearn.linear_model import LinearRegression 

regressor = LinearRegression() 

regressor.fit(X_train, y_train) 

 

"""## Predicting the Test set results""" 

y_pred = regressor.predict(X_test) 

np.set_printoptions(precision=2) 

print(np.concatenate((y_pred.reshape(len(y_pred),1), 

y_test.reshape(len(y_test),1)),1)) 


"""## Predicting the Test set results in other way""" 

y_pred = regressor.predict(X_test) 

np.set_printoptions(precision=2)


# Print header

print("Predicted Profit\tActual Profit")

print("----------------------------------")


# Loop to print each pair

for pred, actual in zip(y_pred, y_test):

    print(f"{pred:,.2f}\t\t{actual:,.2f}")


Output:

[[165349.2 136897.8 471784.1 'New York']
 [162597.7 151377.59 443898.53 'California']
 [153441.51 101145.55 407934.54 'Florida']
 [144372.41 118671.85 383199.62 'New York']
 [142107.34 91391.77 366168.42 'Florida']
 [131876.9 99814.71 362861.36 'New York']
 [134615.46 147198.87 127716.82 'California']
 [130298.13 145530.06 323876.68 'Florida']
 [120542.52 148718.95 311613.29 'New York']
 [123334.88 108679.17 304981.62 'California']
 [101913.08 110594.11 229160.95 'Florida']
 [100671.96 91790.61 249744.55 'California']
 [93863.75 127320.38 249839.44 'Florida']
 [91992.39 135495.07 252664.93 'California']
 [119943.24 156547.42 256512.92 'Florida']
 [114523.61 122616.84 261776.23 'New York']
 [78013.11 121597.55 264346.06 'California']
 [94657.16 145077.58 282574.31 'New York']
 [91749.16 114175.79 294919.57 'Florida']
 [86419.7 153514.11 0.0 'New York']
 [76253.86 113867.3 298664.47 'California']
 [78389.47 153773.43 299737.29 'New York']
 [73994.56 122782.75 303319.26 'Florida']
 [67532.53 105751.03 304768.73 'Florida']
 [77044.01 99281.34 140574.81 'New York']
 [64664.71 139553.16 137962.62 'California']
 [75328.87 144135.98 134050.07 'Florida']
 [72107.6 127864.55 353183.81 'New York']
 [66051.52 182645.56 118148.2 'Florida']
 [65605.48 153032.06 107138.38 'New York']
 [61994.48 115641.28 91131.24 'Florida']
 [61136.38 152701.92 88218.23 'New York']
 [63408.86 129219.61 46085.25 'California']
 [55493.95 103057.49 214634.81 'Florida']
 [46426.07 157693.92 210797.67 'California']
 [46014.02 85047.44 205517.64 'New York']
 [28663.76 127056.21 201126.82 'Florida']
 [44069.95 51283.14 197029.42 'California']
 [20229.59 65947.93 185265.1 'New York']
 [38558.51 82982.09 174999.3 'California']
 [28754.33 118546.05 172795.67 'California']
 [27892.92 84710.77 164470.71 'Florida']
 [23640.93 96189.63 148001.11 'California']
 [15505.73 127382.3 35534.17 'New York']
 [22177.74 154806.14 28334.72 'California']
 [1000.23 124153.04 1903.93 'New York']
 [1315.46 115816.21 297114.46 'Florida']
 [0.0 135426.92 0.0 'California']
 [542.05 51743.15 0.0 'New York']
 [0.0 116983.8 45173.06 'California']]
[[0.0 0.0 1.0 165349.2 136897.8 471784.1]
 [1.0 0.0 0.0 162597.7 151377.59 443898.53]
 [0.0 1.0 0.0 153441.51 101145.55 407934.54]
 [0.0 0.0 1.0 144372.41 118671.85 383199.62]
 [0.0 1.0 0.0 142107.34 91391.77 366168.42]
 [0.0 0.0 1.0 131876.9 99814.71 362861.36]
 [1.0 0.0 0.0 134615.46 147198.87 127716.82]
 [0.0 1.0 0.0 130298.13 145530.06 323876.68]
 [0.0 0.0 1.0 120542.52 148718.95 311613.29]
 [1.0 0.0 0.0 123334.88 108679.17 304981.62]
 [0.0 1.0 0.0 101913.08 110594.11 229160.95]
 [1.0 0.0 0.0 100671.96 91790.61 249744.55]
 [0.0 1.0 0.0 93863.75 127320.38 249839.44]
 [1.0 0.0 0.0 91992.39 135495.07 252664.93]
 [0.0 1.0 0.0 119943.24 156547.42 256512.92]
 [0.0 0.0 1.0 114523.61 122616.84 261776.23]
 [1.0 0.0 0.0 78013.11 121597.55 264346.06]
 [0.0 0.0 1.0 94657.16 145077.58 282574.31]
 [0.0 1.0 0.0 91749.16 114175.79 294919.57]
 [0.0 0.0 1.0 86419.7 153514.11 0.0]
 [1.0 0.0 0.0 76253.86 113867.3 298664.47]
 [0.0 0.0 1.0 78389.47 153773.43 299737.29]
 [0.0 1.0 0.0 73994.56 122782.75 303319.26]
 [0.0 1.0 0.0 67532.53 105751.03 304768.73]
 [0.0 0.0 1.0 77044.01 99281.34 140574.81]
 [1.0 0.0 0.0 64664.71 139553.16 137962.62]
 [0.0 1.0 0.0 75328.87 144135.98 134050.07]
 [0.0 0.0 1.0 72107.6 127864.55 353183.81]
 [0.0 1.0 0.0 66051.52 182645.56 118148.2]
 [0.0 0.0 1.0 65605.48 153032.06 107138.38]
 [0.0 1.0 0.0 61994.48 115641.28 91131.24]
 [0.0 0.0 1.0 61136.38 152701.92 88218.23]
 [1.0 0.0 0.0 63408.86 129219.61 46085.25]
 [0.0 1.0 0.0 55493.95 103057.49 214634.81]
 [1.0 0.0 0.0 46426.07 157693.92 210797.67]
 [0.0 0.0 1.0 46014.02 85047.44 205517.64]
 [0.0 1.0 0.0 28663.76 127056.21 201126.82]
 [1.0 0.0 0.0 44069.95 51283.14 197029.42]
 [0.0 0.0 1.0 20229.59 65947.93 185265.1]
 [1.0 0.0 0.0 38558.51 82982.09 174999.3]
 [1.0 0.0 0.0 28754.33 118546.05 172795.67]
 [0.0 1.0 0.0 27892.92 84710.77 164470.71]
 [1.0 0.0 0.0 23640.93 96189.63 148001.11]
 [0.0 0.0 1.0 15505.73 127382.3 35534.17]
 [1.0 0.0 0.0 22177.74 154806.14 28334.72]
 [0.0 0.0 1.0 1000.23 124153.04 1903.93]
 [0.0 1.0 0.0 1315.46 115816.21 297114.46]
 [1.0 0.0 0.0 0.0 135426.92 0.0]
 [0.0 0.0 1.0 542.05 51743.15 0.0]
 [1.0 0.0 0.0 0.0 116983.8 45173.06]]
[[103015.2  103282.38]
 [132582.28 144259.4 ]
 [132447.74 146121.95]
 [ 71976.1   77798.83]
 [178537.48 191050.39]
 [116161.24 105008.31]
 [ 67851.69  81229.06]
 [ 98791.73  97483.56]
 [113969.44 110352.25]
 [167921.07 166187.94]]
Predicted Profit	Actual Profit
----------------------------------
103,015.20		103,282.38
132,582.28		144,259.40
132,447.74		146,121.95
71,976.10		77,798.83
178,537.48		191,050.39
116,161.24		105,008.31
67,851.69		81,229.06
98,791.73		97,483.56
113,969.44		110,352.25
167,921.07		166,187.94


Post a Comment

0 Comments